

Thermochimica Acta 336 (1999) 127-131

thermochimica acta

www.elsevier.com/locate/tca

The effects of isotopes on the λ -transition and structural phase transition in ammonium chloride

K. Shikano^{a,*}, K. Katoh^a, S. Shimada^b

^aNTT Photonics Laboratories, Nippon Telegraph and Telephone Corporation, Tokai, Ibaraki 319-1193 Japan ^bLaboratory of Solid State Chemistry, Research Group of Materials Chemistry, Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, North 13, West 8, Sapporo 060-8628, Japan

Received 31 May 1999; accepted 9 July 1999

Abstract

A thermal analysis employing differential scanning calorimetry (DSC) was undertaken to study the effects of isotopes¹⁴N–¹⁵N, H–D, and Cl–³⁵Cl on the λ -transition and structural CsCl \Leftrightarrow NaCl type phase transition of ammonium chloride using ¹⁴NH₄Cl, ¹⁵NH₄Cl, ¹⁴ND₄Cl, ¹⁵ND₄Cl, ¹⁴NH₄³⁵Cl, ¹⁵NH₄³⁵Cl, and ¹⁴ND₄³⁵Cl. The endothermic and exothermic peak temperatures of the λ -transition wer 7°C higher when D was substituted for H in ¹⁴NH₄Cl, ¹⁵NH₄Cl, and ¹⁴NH₄³⁵Cl. In the structural phase transition, the lighter isotope-substituted ammonium chloride exhibited a higher transition temperature, except that there was a change in the endothermic peak temperature when ¹⁴N–¹⁵N was substituted in ¹⁴NH₄Cl, ¹⁴ND₄Cl, and ¹⁴ND₄Cl, and ¹⁴NH₄³⁵Cl and in the exothermic peak temperature when Cl–³⁵Cl was substituted in ¹⁴NH₄Cl and ¹⁴ND₄Cl. The isotope effect also tended to expand the hysteresis as a result of the difference between the endothermic and exothermic peak temperatures except for the H–D and Cl–³⁵Cl exchanged samples in ¹⁵NH₄Cl. No clear relationship was found between the isotope effect of the λ - and structural CsCl \Leftrightarrow NaCl type phase transitions. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Ammonium chloride; Cl 35 Cl; DSC; H–D; Isotope effect; λ -transition; 14 N $^{-15}$ N; Structural phase transition

1. Introduction

It has been reported that the structural phase transition temperature of dielectric crystals such as LiTaO₃, PbZrO₃, KH₂PO₄, NH₄H₂PO₄, K₂SeO₄, Rb₂ZnCl₄, NaNO₃, and KNO₃ changes when the stable isotope of their constituent element (⁶Li,⁷Li,⁹⁰Zr,⁹⁴Zr,⁴¹⁻ K,¹⁸O,¹⁵N,⁸⁵Rb,⁸⁷Rb,⁶⁴Zn, and ⁶⁸Zn) is enriched. Specifically, all these crystals exhibit higher transition temperatures when the lighter isotopes are substituted [1]. By contrast, the effects of H–D isotope on the λ -

*Corresponding author. Fax: +81-29-287-7193

transition for KH₂PO₄ (KDP) type crystals and ammonium chloride (NH₄Cl) are well known [2,3]. NH₄Cl exhibits a λ -transition due to intramolecular re-orientation at -30.5° C as well as a structural CsCl \Leftrightarrow NaCl type phase transition due to lattice elongation at 184.3°C [3]. In a previous report [4], we studied the isotope effect of ¹⁴N-¹⁵N and H–D on the structural phase transition temperature in NH₄Cl and found that NH₄Cl enriched with a lighter isotope (H and ¹⁴N) exhibits a higher or the same transition temperature for the CsCl \rightarrow NaCl type transition and a lower or the same temperature for the reverse transition in comparison with D and ¹⁵N-enriched NH₄Cl. It was also found that the isotope effect tends to enlarge the

E-mail address: shikano@iba.iecl.ntt.co.jp (K. Shikano)

^{0040-6031/99/\$ -} see front matter © 1999 Elsevier Science B.V. All rights reserved. PII: S0040-6031(99)00219-1

difference between the peak temperatures of the forward and reverse transitions, compared with ¹⁴NH₄Cl.

However, there has been no systematic study of the isotope effects of each constituent element, hydrogen, nitrogen and chlorine, on the two phase transitions of NH₄Cl. In this paper, we investigate the effects of the isotopes ¹⁴N-¹⁵N, H–D and Cl-³⁵Cl on the λ -transition and structural CsCl \Leftrightarrow NaCl type phase transition of NH₄Cl using differential scanning calorimetry (DSC) and compare the transition with those for ¹⁴NH₄Cl with a natural abundance of nitrogen, hydrogen and chlorine.

2. Experimental procedure

2.1. Samples

¹⁴NH₄Cl with a natural abundance of nitrogen, hydrogen and chlorine was supplied by Kanto Chemicals. ¹⁵N- and D-enriched ammonium chlorides ¹⁵NH₄Cl with 99.8 atomic% consisting of ¹⁵N, ¹⁵ND₄Cl with 99 atomic% ¹⁵N and 99.2 atomic% D, and ¹⁴ND₄Cl with 99.4 atomic% D were supplied by ISOTEC (lot Nos. SY4037, VX4134, and VX4133, respectively). To study the isotope effect of chlorine, we used ³⁵Cl-enriched ammonium chloride as a sample since ³⁷Cl-enriched ammonium chloride is very expensive and difficult to obtain because it is a minor isotope. ³⁵Cl-enriched ammonium chloride of $^{14}NH_4^{35}Cl$ with 99 atomic% ^{35}Cl , $^{15}NH_4^{35}Cl$ with 99 atomic% ^{15}N and 99 atomic% ^{35}Cl , and $^{14}ND_4^{35}Cl$ with 98 atomic% D and 99 atomic% ³⁵Cl were supplied by ICON (lot Nos. IKsp6431, IKsp6432, and IKsp6433, respectively). All the ammonium chloride samples were ground using an agate mortar and sieved to under 177 µm. X-ray diffraction analysis confirmed that all the samples had a CsCl structure at room temperature.

2.2. Thermal analysis

We undertook a DSC thermal analysis (Mac Science model 3120). The temperature was corrected by measuring the melting point ($T_m = 156.6^{\circ}$ C) of indium metal and the onset temperature was in good agreement (within 0.5°C) with the reported T_m value. A sample about 13 mg was put in a sealed-type sample

pan and subjected to a repeated heating/cooling cycle between -50° C and room temperature (RT), followed by a repeated heating/cooling cycle between RT and about 200°C. The heating and cooling rates were 1° C min⁻¹ and each cycle was repeated three times. We used α -Al₂O₃ as a reference sample in all the experiments.

3. Results and discussion

Fig. 1 shows the DSC curves obtained in the second run of the three heating/cooling cycles of seven

Fig. 1. DSC curves obtained in the second run of three heating/ cooling cycles for seven NH_4Cl powders between $-50^{\circ}C$ and RT.

ammonium chlorides between -50° C and RT. Endothermic and exothermic peaks due to the λ transition were observed in all the samples. The respective endothermic and exothermic peak temperatures for ¹⁴NH₄Cl, ¹⁵NH₄Cl, ¹⁴NH₄³⁵Cl and ¹⁵NH₄³⁵Cl were -31° C and -32° C, while the endothermic and exothermic peaks of ¹⁴ND₄Cl, ¹⁵ND₄Cl, and ¹⁴ND₄³⁵Cl exhibited higher temperatures of -24° C and -25° C, respectively. It was found that the endothermic and exothermic temperatures in the λ -transition become 7°C higher with broader peaks when D was substituted for H in ¹⁴NH₄Cl, ¹⁵NH₄Cl and ¹⁴NH₄³⁵Cl. It is also found that the λ transition for all the ammonium chlorides had a narrow hysteresis (1°C), that is the difference between the endothermic and exothermic peak temperatures. It is clear that the H–D substitution has an isotope effect on the λ -transition of NH₄Cl, as reported in [3].

Fig. 2(a) and (b) show the DSC curves obtained in the second run of the three heating/cooling cycles between RT and 200°C using the seven ammonium chlorides. All the samples exhibited an endothermic peak due to the structural CsCl \rightarrow NaCl type phase transition on heating. The peak temperature was 187°C for ¹⁴NH₄Cl, 192°C for ¹⁵NH₄Cl, 179°C for ¹⁴ND₄Cl, 181°C for ¹⁵ND₄Cl, 189°C for ¹⁴NH₄³⁵Cl, 190°C for ¹⁵NH₄³⁵Cl, and 188°C for ¹⁴ND₄³⁵Cl. These temperatures are higher or nearly equal to that

Fig. 2. DSC curves obtained in the second run of three heating/cooling cycles for seven NH_4Cl powders between RT and 200°C: (a) heating process, (b) cooling process. The dotted lines correspond to the endothermic and exothermic peak temperatures for $^{14}NH_4Cl$.

Table 2

Table 1 Structural phase transition temperature during heating and cooling of ${}^{14}NH_4Cl$, ${}^{15}NH_4Cl$, ${}^{15}ND_4Cl$, ${}^{15}ND_4Cl$, ${}^{14}NH_4{}^{35}Cl$, ${}^{15}NH_4{}^{35}Cl$, and ${}^{14}ND_4{}^{35}Cl$

Sample	T_{endo}^{a} (°C)	$T_{\rm exo}^{a}$ (°C)	$\Delta T^{\mathbf{b}}$ (°C)
¹⁴ NH ₄ Cl	187.0 ± 0.0	169.5 ± 0.5	17.5
¹⁵ NH ₄ Cl	192.3 ± 0.5	159.8 ± 0.8	32.5
¹⁴ ND ₄ Cl	178.7 ± 0.5	155.0 ± 0.6	23.7
¹⁵ ND ₄ Cl	181.0 ± 0.0	150.2 ± 0.4	30.8
14NH435Cl	189.2 ± 0.4	159.8 ± 0.4	29.4
¹⁵ NH4 ³⁵ Cl	190.8 ± 0.4	160.0 ± 0.9	30.8
¹⁴ ND ₄ ³⁵ Cl	187.2 ± 0.8	152.2 ± 1.5	35.0

^a T_{endo} and T_{exo} indicate the endothermic and exothermic peak temperatures of ammonium chloride during heating and cooling, respectively.

^b $\Delta T = T_{endo} - T_{exo}$.

of ¹⁴NH₄Cl except for those of ¹⁴ND₄Cl and ¹⁵ND₄Cl. As shown in Fig. 2(b) obtained from the DSC curves during the cooling process, all the samples exhibited an exothermic peak temperature due to the reverse transition. They appeared at 170°C for ¹⁴NH₄Cl, 160°C for ¹⁵NH₄Cl, 154°C for ¹⁴ND₄Cl, 150°C for ¹⁵ND₄Cl, 160°C for ¹⁴NH₄³⁵Cl, 160°C for ¹⁵NH₄³⁵Cl, and 151°C for ¹⁴NH₄Cl. A hysteresis caused by the difference between the endothermic and exothermic peak temperatures is observed in all the curves. The endothermic and exothermic peak shapes for the six labeled samples (¹⁵NH₄Cl, ¹⁴NH₄Cl, ¹⁴ND₄Cl, ¹⁵ND₄Cl, ¹⁵ND₄Cl, ¹⁵NH₄³⁵Cl, and ¹⁴NH₄Cl, ¹⁵ND₄Cl, ¹⁵ND₄Cl, ¹⁵ND₄Cl, ¹⁵NH₄³⁵Cl, and ¹⁴NH₄Cl, ¹⁵ND₄Cl, ¹⁵ND₄Cl, ¹⁵ND₄Cl, ¹⁶NH₄³⁵Cl, ¹⁶NH₄³⁵Cl, ¹⁶ND₄Cl, ¹⁵ND₄Cl, ¹⁶ND₄Cl, ¹⁶NH₄³⁵Cl, ¹⁶NH₄³⁵Cl, ¹⁶NH₄³⁵Cl, ¹⁶ND₄Cl, ¹⁶ND₄Cl, ¹⁶ND₄Cl, ¹⁶NH₄³⁵Cl, ¹⁶NH₄³⁵Cl, ¹⁶NH₄³⁵Cl, ¹⁶NH₄³⁵Cl, ¹⁶ND₄Cl, ¹⁶ND₄Cl, ¹⁶ND₄Cl, ¹⁶NH₄³⁵Cl, ¹⁶NH₄

Table 1 summarizes the structural phase transition temperatures (T_{endo} , T_{exo}) for the seven ammonium chloride samples. They are the average values for three heating/cooling cycles and have a good reproducibility. It is noted that the endothermic and exothermic peak temperatures are almost the same as or a few degrees lower than those reported in our previous paper in which we used a different DSC apparatus [4]. Table 1 also shows $\Delta T (=T_{endo} - T_{exo})$, indicative of the width of the hysteresis. On the basis of these results, Table 2 summarizes the isotope effect of $^{14}N^{-15}N$, H–D and Cl $^{-35}$ Cl substitution on the structural phase transition temperature. The isotope shift of T_{endo} , T_{exo} and ΔT as the result of $^{14}N^{-15}N$ substitution is shown in Table 2(a). The T_{endo} and ΔT of the ^{15}N -enriched samples ($^{15}NH_4$ Cl, $^{15}ND_4$ Cl, and

Isotope shift of T_{endo} ,	$T_{\rm exo}$ and ΔT by substitute	tion of ${}^{14}N - {}^{15}N$ (a),
$H-D$ (b) and $Cl-^{35}Cl$	(c)	

Sample	Shift (°C)				
	Tendo	$T_{\rm exo}$	ΔT		
(a) ${}^{14}N-{}^{15}N$ substitution (${}^{14}N \rightarrow {}^{15}N$)					
¹⁴ NH ₄ Cl/ ¹⁵ NH ₄ Cl	+5.3	-9.7	+15.0		
¹⁴ ND ₄ Cl/ ¹⁵ ND ₄ Cl	+2.3	-4.8	+7.1		
¹⁴ NH ₄ ³⁵ Cl/ ¹⁵ NH ₄ ³⁵ Cl	+1.6	+0.2	+1.4		
(b) H–D substitution (H \rightarrow D)					
¹⁴ NH ₄ Cl/ ¹⁴ ND ₄ Cl	-8.3	-14.5	+6.2		
¹⁵ NH ₄ Cl/ ¹⁵ ND ₄ Cl	-11.3	-9.6	-1.7		
¹⁴ NH ₄ ³⁵ Cl/ ¹⁴ ND ₄ ³⁵ Cl	-2.0	-7.6	+5.6		
(c) Cl 35 Cl substitution (Cl \rightarrow 35 Cl)					
¹⁴ NH ₄ Cl/ ¹⁴ NH ₄ ³⁵ Cl	+2.2	-9.7	+11.9		
¹⁵ NH ₄ Cl/ ¹⁵ NH ₄ ³⁵ Cl	-1.5	+0.2	-1.7		
¹⁴ ND ₄ Cl/ ¹⁴ ND ₄ ³⁵ Cl	+8.5	-2.8	+11.3		

 $^{15}NH_4^{35}Cl$) are 1.6–5.3°C higher and 1.4–15°C broader than those of the corresponding ¹⁴N-enriched samples, while the T_{exo} is almost the same or 4.8– 9.7°C lower. The T_{endo} and T_{exo} of the D-enriched samples (¹⁴ND₄Cl, ¹⁵ND₄Cl and ¹⁴ND₄³⁵Cl) are 2– 11.3°C and 7.6–14.5°C lower, respectively, than those of the corresponding H-enriched samples (Table 2(b)). ΔT is 5.6–6.2°C broader, in contrast to ¹⁵NH₄Cl where the value is -1.7° C. The isotope shift caused by $Cl^{35}Cl$ substitution is also shown in Table 2(c). T_{endo} , $T_{\rm exo}$ and ΔT of the ³⁵Cl-enriched samples (¹⁴NH₄³⁵Cl and ${}^{14}ND_4{}^{35}Cl$) are 2.2–8.5°C higher, 2.8–9.7°C lower and about 11–12°C broader than those of ¹⁴NH₄Cl and 14 ND₄Cl. In contrast, the isotope shift for 15 NH₄Cl caused by Cl-³⁵Cl substitution exhibits the reverse tendency or little change compared with ¹⁴NH₄Cl and ¹⁴ND₄Cl. It is found that such isotope effects as shifts of T_{endo} and T_{exo} and increases in ΔT by Cl-³⁵Cl substitution were large in comparison with those obtained by the substitution of ¹⁴N-¹⁵N and H-D although the atomic concentration of ³⁵Cl in NH₄Cl is varied from 75.77 to 99 atomic%, while the atomic concentration of D and ¹⁵N is increased from 0.0148% and 0.365%, respectively, to more than 98%.

We conclude that the isotope H–D substitution has a rising effect on the λ -transition temperature of NH₄Cl and the H–D, ¹⁴N–¹⁵N, and Cl–³⁵Cl substitutions also have a changing effect on the structural CsCl⇔NaCl

type phase transition temperature. The λ -transition temperature during heating and cooling was increased by 7°C when H was substituted with D. In the structural phase transition, the lighter isotope in ammonium chlorides exhibited a higher transition temperature during heating and cooling except for the endothermic peak temperature in the substitution of $^{14}N-^{15}N$ ($^{14}NH_4Cl$, $^{14}ND_4Cl$, $^{14}NH_4^{35}Cl$) and the exothermic peak temperature in the substitution of $Cl-^{35}Cl$ ($^{14}NH_4Cl$, $^{14}ND_4Cl$). The isotope effect also tended to expand the hysteresis (ΔT) expect for the H–D and $Cl-^{35}Cl$ substitution in $^{15}NH_4Cl$. In terms

of the isotope effects, there seems to be no clear relation between the λ - and structural phase transition.

References

- [1] T. Hidaka, K. Oka, Phys. Rev. B 42 (1990) 8295.
- [2] R. Blinc, J. Phys. Chem. Solids 13 (1960) 204.
- [3] N.L. Ross Kane, in: J.W. Mellor (Ed.), Inorganic and Theoretical Chemistry, vol. 8 (Suppl. 1, Nitrogen (Part 1)), Longmans, London, 1964, p. 383.
- [4] K. Shikano, K. Katoh, S. Shimada, M. Katoh, Thermochim. Acta 306 (1997) 153–157.